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Weighted Markov and Bernstein type inequalities are established for generalized
non-negative polynomials and generalized polynomial weight functions. The
novelty of the results lies in the fact that in these estimates only the generalized
degrees of the generalized polynomial and the generalized polynomial weight func­
tion, respectively, and a multiplicative absolute constant show up. To prove such
inequalities was motivated by studying systems of orthogonal polynomials
simultaneously, associated with generalized Jacobi weight functions. CC 1992

Academic Press, Inc

l. INTRODUCTION

The well-known Markov-Bernstein inequality [10, pp. 39-41] asserts
that

'P'(y),~min{R,n2}_~a;<;llp(x)1 (-I<y<l) (1.1)

for every polynomial p E IIn , where IIn denotes the set of all real algebraic
polynomials of degree at most n. Markov and Bernstein type inequalities in
weighted spaces play a significant role in proving inverse theorems of
approximation and have their own intrinsic interest. The magnitudes of

max_I,,;x,,;1 If'(x) w(x)1

max_I<;x";llf(x)w(x)! '

If'(y) w(y)1

maL I ";x"; I If(x) w(x)1
(-I<y<l)

(1.2 )

(1.3)

and their corresponding L p analogues, respectively, for polynomials f E II"
and generalized Jacobi weight functions w were examined by a number of
authors [I, pp. 90-111], [8,9,11,13,14], [12, pp. 161-164], but a multi­
plicative constant depending on the weight function appears in these
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estimates. In the next section we introduce generalized polynomials and
examine the magnitudes of (1.2) and (1.3), when both I and ware the
absolute values of generalized polynomials (in other words both I and w
are generalized non-negative polynomials; see the remark at the end of Sec­
tion 2). In our inequalities only the generalized degrees ofI and w, respec­
tively, and a multiplicative absolute constant show up. The results are new
and (in a sense) sharp even when I is an ordinary polynomial. In [4J the
case w == 1 is studied and some ideas from that case playa key role in this
paper as well.

Our motivation was to find tools with which to examine systems of
orthogonal polynomials simultaneously, associated with generalized Jacobi,
or at least generalized non-negative polynomial weight functions of degree
at most r> 0. In a recent paper [7J we gave sharp estimates in this spirit
for the Christoffel function on [- 1, 1J, and for the distances of the
consecutive zeros of orthogonal polynomials, associated with generalized
non-negative polynomial weight functions of degree at most r.

2. GENERALIZED POLYNOMIALS, DEFINITIONS, AND NOTAnONS

Generalized algebraic and trigonometric polynomials were introduced,
studied thoroughly, and applied in a sequence of papers [2-4, 6, 7].
Denote by IIn the set of all real algebraic polynomials of degree at most n.
The function

k

1=0 P~
j~l

(PnEIIn\IIn_l,rJ>O,j=1,2,oo.,k)
J J J

(2.1 )

will be called a generalized real algebraic polynomial of (generalized)
degree

k

N= L rjnj .

j~l

To be precise, in this paper we will use the definition

(2.2)

zr = exp(r log Izi + ir arg z)

Obviously

(ZEC,r>O, -n~argz<n). (2.3)

k

III = IlIPnp.
j~l

(2.4)

We will denote by GRAP N the set of all generalized real algebraic
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polynomials of degree at most N. We introduce the class IGRAPI N =
{1/1:fEGRAPN}. The function

k

I(z) = c n (z -zXJ
j~l

(2.5)

will be called a generalized complex algebraic polynomial of (generalized)
degree

We have

k

N= I f j .

j=!

k

I/(z)1 = lei n Iz - ZXJ·
j=!

(2.6)

(2.7)

Denote by GCAP N the set of all generalized complex algebraic polynomials
of degree at most N. The set {III: IE GCAP N} will be denoted by
IGCAPIN'

In the trigonometric case we denote the set of all real trigonometric
polynomials by Tn. The function

k

1= TI p~J
j= 1

(2.8)

will be called a generalized real trigonometric polynomial of (generalized)
degree N defined by (2.2). Obviously (2.4) holds again. We will denote by
GRTPN the set of all generalized real trigonometric polynomials of degree
at most N. Let IGRTPIN= {I/I:/EGRTPN}. We say that the function

k

I(z) = c TI (sin((z-zJ/2))'J (0 #- CE C, ZjE C, rj > 0, j= 1, 2, ..., k) (2.9)
j=!

is a generalized complex trigonometric polynomial of (generalized) degree

We have

k

N= 1L rj •

j=!

k

I/(z)1 = lei TI Isin((z-zJ/2)lrJ•

j=!

(2.10)

(2.11 )

Denote the set of all generalized complex trigonometric polynomials of
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degree at most N by GCTPN' The set {If I: f E GCTPN} will be denoted
by IGCTPIN'

We remark that if f E IGCAPI N' then restricted to the real line we have
f E IGRAPI N' Similarly if f E IGCTPI N' then restricted to the real line we
have f E IGRTPI N' These follow from the observations

and

Iz - zi = ((z - z)(z - 2))1/2
.I .1.1

(z E IR) (2.12 )

Isin( (z - z)/2)1 = (sin( (z - zj)/2) sin( (z - 2j )/2) )1/2

= ((cosh(Im Zj) - cos(z - Re Zj) )/2) 1/2 (ZEIR). (2.13)

Using (2.12) and (2.13) one can easily check that restricted to the real line

IGCAPIN= {f= j~1 PS/2: 0,,;;, PjE II2 , rj>O, j= 1, 2, ..., k; jt rj";;'N}

and

The subject of this paper is the classes IGCAPIN and IGCTPIN restricted
to the real line, and the elements of these classes can be considered as
generalized non-negative polynomials in the above sense. This explains the
title. Throughout this paper C;, i = 1, 2, ..., denotes a suitable positive
absolute constant, and l' means dfldt, where t is real.

3. NEW RESULTS

We prove the following weighted Markov-type inequality.

THEOREM 1. LetfE IGCAPIN be of the form (2.7) with rj~ 1 (1 ";;'j,,;;,k)
and let WE IGCAPlr be arbitrary. Then

max 11'(x)-w(x)I";;' c\(N + n 2 max f(x) w(x),
-l~x~l -l~x~l

where C1 is an absolute constant.

In the trigonometric case we show
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THEOREM 2. Let f E IGCTPI N be of the form (2.11) with rj ~ 1
(1 ~j~k) and let WE IGCTPlr be arbitrary. Then

max 1f'(x)w(x)l~c2(r+1)(N+n max f(x)w(x),
-n~x~rr -n~x~rr

where C2 is an absolute constant.

By the substitution x = cos t, from Theorem 2 we will easily obtain

THEOREM 3. Let f E IGCAP/ N be of the form (2.7) with rj ~ 1
(1 ~j~k) and let WE IGCAPlr be arbitrary. Then

c2(r+ 1)(N+n
If'(y) w(y)1 ~ jl"=""? ~~:X';I f(x) w(x)

where C2 is the same as in Theorem 2.

(-1 < Y < 1),

Remark 3.1. The problem arises, how to define I' for anfE IGCAPIN
or fE IGCTPIN' Observe that though f' may not exist (even as an
extended real) at the zeros of f, the one-sided derivatives exist and are
equal in absolute value.

Remark 3.2. We conjecture that in the inequalities of Theorems 2 and
3 the multiplicative factor (r+ 1) can be dropped. If this conjecture were
true, we would obtain Theorem 1 as a simple consequence of Theorem 3,
using a Remez-type inequality [2, Theorem 1] for generalized complex
algebraic polynomials.

Remark 3.3. HfE IGCAPIN is of the form (2.7) with rj~ 1 (1 ~j~k),

then fEIGRAPIN is of the form (2.4) with rj~~' Pn/z)~O (ZE~,

O~j~h), and rj~1 (h<j~k), where (O~)h(~k) is a suitable integer.
Furthermore, WE /GCAP/ r implies WE IGRAPI r. Similar relations hold
for generalized complex and real trigonometric polynomials. These follow
easily from (2.12), (2.13) and the fact that we study each function restricted
to the real line.

Remark 3.4. H f E IGCAPI N is of the form

k

f(z)=lcl n IZ-ZXi
j=l

(0 # c EC, Zj E~ are different, rj ~ 1, j = 1, 2, ..., k), (3.1)

then 11'1 E IGCAPI N has only real zeros, and at least one of any two adja­
cent zeros of 11'1 has multiplicity at least 1 (for generalized polynomials the
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multiplicities of the zeros can be arbitrary positive real numbers). A similar
statement holds for every f E IGCTPI N of the form

k

f(z)=lel n Isin((z-zJ/2)I'j
j~1

(0 # e E C, Zj E IR are different, rj~ 1, j = 1, 2, ..., k). (3.2)

We discuss only the trigonometric case; the same argument works in the
algebraic case as well. By (3.2) we have

k

f = lei f1 PjP
j~ 1

(3.3 )

and using the product rule, we obtain

k I k k I11'1 = le/21 }ll PjJl2-1 i~1 riP; jDI Pj .

j*i
Observe that in (3.4)

k k

Q= L riP; n PjETk
j~ 1 j~ 1

i*i

(3.4 )

(3.5)

is an ordinary trigonometric polynomial. Without loss of generality we may
assume that -n:::; ZI < Z2 < ... < Zk < n. By Rolle's theorem 11'1 has a zero
Yj in each of the intervals (Zj,zj+l) if l:::;j:::;k-l, and a zero Yk in
(Zk> ZI + 2n). Hence from (3.3), (3.4), and (3.5) we easily deduce that

k

Q(z)=e' n sin((z-zj)/2)sin((z- Yj)/2),
j=1

This, together with (3.3) and (3.4), yields that

k k

II'(z)1 = le"l n Isin(z-z)/2I,j-1 n Isin((z- Yj)/2)1,
j=1 j=1

which gives the desired result.

4. LEMMAS FOR THEOREM 1

e' E IR.

e" E C,

(3.6)

(3.7)

Our first two lemmas guarantee the existence of certain extremal
generalized polynomials.
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LEMMA 4.1. Ifmj~O (1 ~j~k) are fixed integers, Sj>O (1 ~j~k) are
fixed reals such that 'I.;~lsjmj~r, then for every O~fEIGCAPIN of the
form (2.7) with rj~l (l~j~k) andfor every -1<£5<1 there exists a
WE \GRAP\ r of the form

k

W= n IQmp
j~ 1

such that

1/'(1) w(1)1 _ = sup 1/'(1) w(l)1 =L< 00 (4.1)
max_l,;;x,;;Jf(x) w(x) w max_1,;;x,;;bf(x) w(x)

and

I/,(1) w(l)1 = max I/'(x) w(x )1,
-l~x~l

(4.2)

where the supremum in (4.1) is taken for all 0~ W E [GRAP Ir of the form

k

W= n 1QmFJ
j~ 1

such that

1/,(1)w(1)j= max I/,(x)w(x)j.
-l~x~l

LEMMA 4.2. If nj~ 0 (1 ~ j ~ k) and 0 ~ h ~ k are fixed integers, rj ~ !
(1 ~j ~ h) and rj ~ 1 (h < j ~ k) are fixed reals such that 'I.J= 1 rjnj ~ N, then
for every 0~ w E IGRAPI r and for every -1 < £5 < 1 there exists an
IE IGRAPIN of the form

k

1= n \P"P
j~l

such that

11'(1)w(1)! 1/,(l)w(1)/

1
= sup = K < 00, (4.3)

max_1';;x,;;J (x)w(x) f max_1,,;x,,;Jf(x)w(x)

where the supremum in (4.3) is taken for all 01=f E jGRAPI N of the form

k

f= n IP"P
j~l
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Our next two lemmas show that the extremal generalized polynomials
defined by Lemmas 4.1 and 4.2, respectively, have some additional
properties.

LEMMA 4.3. Let WE IGRAPlr be defined by Lemma 4.1. Then W has all
its zeros in [ -1,6].

LEMMA 4.4. Let JE IGRAPI N be defined by Lemma 4.2. Then Jhas only
zeros.

The following Remez-type inequality was proved in [2].

LEMMA 4.5. For every g E IGCAPI Nand 0 < s < 2 we have

m({yE[-1, 1]:g(y)~exp(-N~) max g(X)})~C3S,
-l~x~l

where m( . ) denotes the Lebesgue measure and C3 > 0 is an absolute constant.

From Lemma 4.5, by a Phragmen-Lindelof type argument we will easily
obtain

LEMMA 4.6. Let N~ 1 and gE IGCAPIN be such that

g(l)= max g(x).
-l~x:O::;l

(4.4 )

Then for every 0 < C4 ~ 1 there are cs > 1 and C6 > 0 depending only on C4

such that

m({YE [1-c4 N- 2, 1]: g(Y)~C51 max g(x)})~c6N-2
-l~x:(l

holds.

The following lemma can be found in [5].

LEMMA 4.7. Let r > 0 and 0 ~ p E Iln be such that

Ip(1)\ = max Ip(x)l.
-l:s;;x~l

(4.5)

Then p has at most c7n~ zeros in [1 - r, 1], where C7 is an absolute
constant.

We remark that in Lemma 4.7, C7 =.Jl can be chosen. However,
in the sequel we assume only that C7 ~ J2 in a suitable choice. From
Lemma 4.7 we will easily conclude
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LEMMA 4.8. Let r>O, 0:1= gE IGCAPIN be of the form (2.7) such that
each rj is rational, and assume that

g(l) = max g(x).
-l:E;x~l

(4.6 )

Then the total multiplicity of the zeros of g lying in [1 - r, I] is at most
c7Nfi, where C7 is the same absolute constant as in Lemma 4.7.

From Lemmas 4.6 and 4.8 we will obtain

LEMMA 4.9. Assume that fE IGCAPIN and WE IGCAPlr are of the
forms

kl

f(z) = fllz-zxJ
j=l

and
k2

w(z)= fllz-u)'J
j~l

respectively, and

(Zj are real, rj ~ 1 are rational, 1~ j ~ k 1) (4.7)

Then

If'(l) w(l)1 = max If'(x) w(x)l·
-l~x~1

If'(l) w(l)1 ~ cg(N + T)2 max f(x) w(x),
-l~x:S;;b

(4.9)

where (j = 1- 2c4(N + r) -2 and Cg is an absolute constant.

Our last lemma drops some assumptions from Lemma 4.9 and gives the
same conclusion.

LEMMA 4.10. Assume that fE IGCAPIN and WE IGCAPlr are of the
forms

kl

f(z) = fllz-zXJ
j~l

and

k2

w(z) = n Iz-u)S}
j~ 1

(Zj are real, rj ~ 1 are rational, 1~ j ~ k 1)

(uj E C, Sj> 0 are rational, 1~ j ~ k 2 ),

(4.10)

(4.11 )
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1f'(I)w(I)I~c9(N+T)2 max f(x)w(x), (4.12)
-l~x~J

where <> is the same as in Lemma 4.9 and C9 is an absolute constant.

5. LEMMAS FOR THEOREM 2

Our lemmas for Theorem 2 are very similar to the corresponding ones
from Section 4. The unwanted factor r + 1 appears in Lemma 5.9 first,
since Lemma 5.8, though it is sharp, cannot be exploited to such an extent
in Lemma 5.9 (see (7.14)) as Lemma 4.8 in Lemma 4.9 in the corresponding
algebraic case.

LEMMA 5.1. Ifmj~O (1 ~j~k) are fixed integers, Sj>O (1 ~j~k) are
fixed reals such that L;~lSjmj~N, then for every O;l:.fEIGCTPIN of the
form (2.11) with rj~ 1 (1 ~j~k) and for every O<<><n there exists a
WE IGRTPlr of the form

k

w= n IQmp
j~l

such that

If'(n) w(n)1 If'(n) w(n)1 (5.1)
-----'~----'----'----'-_- = sup = L < 00
max_o,,;;x";;o f(x) w(x) w max_ o,,;; x";; 0 f(x) w(x)

and

If'(n) w(n)1 = max If'(x) w(x)l,
-7t'~X~1[

(5.2)

where the supremum in (5.1) is taken for all 0;1:. w E IGRTPI r of the form

k

w= n IQmr
j~l

such that

If'(n) w(n)1 = max If'(x) w(x)l·
-1t:E;x~1t

LEMMA 5.2. If nj~ 0 (1 ~ j ~ k) and 0 ~ h ~ k are fixed integers, rj~ ~

(1 ~j~h) and rj~ 1 (h<j~k) are fixed reals such that L.;~1 rjnj~N,
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then for every 0 ~ W E IGRTPI r and for every 0 < b < n there exists an
]E IGRTPIN of the form

k

]= TI 11\lr)
j~1

such that

Il'(n) w(n)1 If'(n) w(n)1
_--":........c.--'-----,;---'----_ = sup = K < Cf) (5.3 )
maL" ";",;:,, ](x) w(x) f maL"";x,,;,, f(x) w(x) ,

where the supremum is taken for all 0 ~ f E IGRTPI N of the form

k

f = TI IPn)'i
j~1

(PnE Tn (1 ~j~k), Pn(Z)~O (ZE IR, 1~j~h)).
)) )

LEMMA 5.3. Let WE IGRTPlr be defined by Lemma 5.1. Then W has all
its zeros in [ - b, b].

LEMMA 5.4. Let]E IGRTPIN be defined by Lemma 5.2. Then] has only
real zeros.

The following Remez-type inequality was proved in [2].

LEMMA 5.5. For every g E /GCTPI Nand 0 < s < 2n we have

m({YE[-n,n):g(y)~exp(-Ns) max g(x)})~cJOs,
-7t::;:;';X~1t"

where m(·) denotes the Lebesgue measure and c10 is a positive absolute
constant.

LEMMA 5.6. Let N~ 1 and gE IGCTP/ N be such that

g(n) = max g(x).
-1t"~X~1t"

(5.4 )

Then for every 0 < C4 ~ 1 there are cs > 1 and C6 > 0 depending only on C4

such that

m({YE [1t-c4N~"1t+c4N~I]:g(Y)~C51 max g(x)})~c6N-I
-1t::S;X~1r

holds.

The following lemma can be found in [5].
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LEMMA 5.7. Let r > 0 and O"$. p E Tn be such that

Ip(n)1 = max Ip(x)l·
-rr~X~1r

Then p has at most 3nr zeros in [n - r, n + r].

(5.5)

LEMMA 5.8. Let r>O and O"$.gE IGCTPIN be of the form (2.11) such
that each rj is rational, and assume that

g(n) = max g(x).
-1t::o::;x~rr

(5.6)

Then the total multiplicity of the zeros of g lying in [n - r, n + r] is at most
3Nr.

LEMMA 5.9. Assume that fE IGCTPIN and WE IGCTPlr are of the
forms

kl I Z - zlrJ

f(z) =jI)1 sin~ (Zj are real, rj ~ 1 are rational, 1~ j ~ k I) (5.7)

and

respectively, and

Then

W(Z)=i\ Isin Z~UjISJ

(uj E [ -n + ~(N + r) -1, n - ~(N + r) -I],

Sj> 0 are rational, 1~j ~ k 2 ),

If'(n) w(n)1 = max If'(x) w(x)l.
-rr~X~7[

(5.8)

(5.9)

1f'(n)w(n)l~cll(r+l)(N+r) max f(x)w(x),
-()~X~()

where () = 1! - ~(N+ r) - I and c II is an absolute constant.

LEMMA 5.10. Assume that fE jGCTPIN and WE IGCTPlr are of the
forms

k

1

' Z _ z",r
J

f(z) = n sin __J (zjare real, rj~ 1 are rational, 1~j~kd
j~ I 2

(5.10)
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k) I Z- U./ S

/W(Z) = n sin __J

j=1 2

respectively. Then

(Uj E if, Sj> 0 are rational, 1~ j ~ k 2 ), (5.11 )

If'(n) w(n)1 ~ c12(F + 1)(N +n max f(x) w(x), (5.12)
-(j~x~(j

where (j = n - ~(N + r) -I and c\2 is an absolute constant.

6. PROOFS OF THE LEMMAS FROM SECTION 4

Proof of Lemma 4.1. Choose W;E IGRAPlr (i= 1, 2, ... ) of the form

k

w·= n IQ ·lsJI mj,l

j=1

(6.1 )

such that

11'(1) wi (1 )1 ___. {L '-I'}
7mm -I ,I

max_I ';;;x,;;;b f(x) wi(x)

and

(i = 1, 2, ... )

11'(1) w;(1)1 = max If'(x) wi(x )1·
-l~x~l

We may assume that

max IQmj.i(x)1 = 1 (1 ~j~k, i= 1,2, ... ).
-l~x~l

For every 1~j~k we can select a subsequence of {Qmj.J:l (without loss
of generality we may assume that this is {Qmj,i}:l itself) such that

lim max 1QmJ,i(x) - Qmj(x)1 = 0
j-----.co -l:'f:x~l

holds for every 1~ j ~ k with some limit polynomials Qm E IIm' Then it is
. J J

easy to see that

k

w= IlIQm)'J
j~1

has the desired properties. I
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The proof of Lemma 4.2 is quite similar to that of Lemma 4.1, so we
omit the details.

Proof of Lemma 4.3. If w(zo) = 0 for a Zo E C\IR (we may assume that
Qm[(zo) = 0), then the function

with a sufficiently small B > 0 contradicts the maximality of w. If w(zo) = 0
for a ZoE IR\[ -1, <5] (we may assume that QmJzo) =0), then the function

with a sufficiently small B > 0 contradicts the maximality of w. Thus the
lemma is proved. I

Proof of Lemma 4.4. If ](~o) = 0 for a Zo E C\IR, then there is an index
1~ i ~ k such that Pn;(ZO) = O. Then the function

1.(Z) = CD} IPnP) IPnj(z) (1- (Z~~o~:~zo))lr;E IGRAPIN
j¢i

with a sufficiently small B > 0 contradicts the maximality of J Thus the
lemma is proved. I
Lemma 4.5 was proved in [2, Theorem 1].

Proof of Lemma 4.6. Let Tn(x) = cos(n arccos x) (-1 ~ x ~ 1) be the
Chebyshev polynomial of degree n, and with n = [N] ~ 1 we define

(6.2)

It is easy to check that the well-known explicit formula for Tn outside
( -1, 1) implies

(6.3 )

where Cs is a constant depending only on c4 • We study the product

(6.4)
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where gEl GCAP IN satisfies (4.4). From (6.2), (6.3), (6.4), and (4.4) we
easily deduce that

IG(y)l:::; max g(x)<c;lQn(l) g(l):::;C;l max IG(x)1
-l~x~l -l~x~l

(6.5)

Applying Lemma 4.5 to IGI E IGCAPI2N with s = (log cs)2(2N) -2, we
obtain

m({YE[-l,l]:IG(y)l~exp(-logcs) max IG(x)l})
-l~x~l

=m({YE[-1,1]:IG(Y)I~exp(-2Nfi) max IG(x)l})
-l.:s;x.:s;l

(6.6)

This, together with (6.5), yields

m({yE [1-c4N- 2, IJ: IG(y)1 ~C;l max IG(x)I})~c6N-2,
-1';;x,;;l

hence by (6.2), (6.3), and (6.4) we get

m({YE[1-c4N-2,I]:g(y)~c;1 max g(x)})~c6N-2;
-l.:s;x~l

thus the lemma is proved. I
The proof of Lemma 4.7 can be found in [5, Lemma 1 and Corollary 1].

Proof of Lemma 4.8. Let rj = q)q (1:::; j :::; k) with some positive
integers. Applying Lemma 4.7 to the polynomial

k

Icl 2q n ((z-z;)(Z-ZjW1Efl2qN'
j~l

and taking the (2q)th root of its modulus we get the lemma
immediately. I

Proof of Lemma 4.9. By Remark 3.4., (4.7) implies that 1f'1 E IGCAPIN
has only real zeros, and at least one of any two adjacent zeros of 1f'1 has
multiplicity at least 1. Hence, applying Lemma 4.8 to g = If/wi E

IGCAPIN+F with r = c4(N+ F)-2 = (c 7(N + F))-2, we can deduce that
1f'1 does not have two different zeros in [1 - c4(N +F) -2, 1]. Since w does
not have any zero'in [1-c4(N+F)-2, IJ by assumption, the set

{YE[I-c4(N+F)-2,I]:g(y)~c;1 max g(x)} (6.7)
-l.:s;x~l
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is the union of at most two intervals. Since If'l does not have two different
zeros in [1- c4(N +n- 2

, 1], by Rolle's theorem we deduce that f has
at most two different zeros in [1-C4(N+F)-2,1]. Hence, applying
Lemma 4.6 to g= If'wl E IGCAPIN+T, we can find an interval

(6.8)

such that

(6.9)

and

g(t)~C51 max g(x)
-l~x:S;l

(t E I) (6.10)

By (6.8) and (4.8)

f is positive (hence differentiable) on I. (6.11 )

w is positive (hence differentiable) on I. (6.12 )

Because of (6.11) and (6.12) we can use the partial integration formula for
g = If'wl on I, and we obtain

~ (N + F)-2 max If'(x) w(x)1
6cs -I ";x"; I

~rIf'(t) w(t)1 dt = Irf'(t) w(t) dtl

~ If(b) w(b) - f(a) w(a)1 +r If(t) w'(t)1 dt. (6.13)
a

Here we used the fact that 1f'(t)1 does not vanish on [a, b] = I because
of (6.10). To handle the term J~ If(t) w'(t)j dt we use Lemma 4.8. We
introduce the intervals

(IX = 0, 1, 2, ... ).

(6.14 )

By assumption (4.8), w does not vanish in 10 , and applying Lemma 4.8
to g= If'wl (we can do so by assumption (4.9)) we deduce that the
total multiplicity of the zeros of g lying in la is at most
C7~ (N + F)(IX + 1)2(N +F)-I = J2(1X + 1)2. Now let

tE/c [1-C4(N+F)-2, 1]. (6.15)
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Then uj < t by (4.8), therefore

299

Therefore, recalling (6.8), we obtain

b J8 fbf If(t) w'(t)1 dt::::;- (N + r)2 f(t) w(t) dt
a C4 a

::::; J8 (N + r?(b - a) max f(x) w(x)
C4 u';;x,;;b

::::; J8 max f(x) w(x).
-l:::;x:S;l

(6.17 )

This, together with (6.13), yields

max If'(x) w(x)l::::; c13(N + r)2 max f(x) w(x). (6.18)
-l~x~l -l~x~l

Observe that the Remez-type inequality of Lemma 4.5 implies

max f(x) w(x)::::; C14 max f(x) w(x) (6.19)
-l~x~l -J~x~o

with b=1-2c4(N+r)-2, where C14 is an absolute constant. Now (6.18)
and (6.19) gives the lemma. I

Proof of Lemma 4.10. First assume that (4.9) holds. Then using
Lemmas 4.1, 4.3, 4.9 and Remark 3.3, we obtain (4.12). Now we can easily
drop assumption (4.9). Choose an Xo E [-1, 1J such that

If'(xo) w(xo)1 = max If'(x) w(x)l·
-l~x~l

(6.20)

Without loss of generality we may assume that 0::::; xo::::; 1. Applying the
already proved part of the lemma transformed linearly to the interval
[ -1, xoJ, we get

640/68/3-6
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2cg
11'(1) w( 1)1 ~ II'(xo) w(xo)1 ~ 1+ Xo (N + r)2 -1~~~XO f(x) w(x)

~ 2cg(N + r)2 max f(x) w(x)
-l~x~l

~ c9(N + r)2 max f(x) w(x), (6.21)
-l:::::;x~(j

where the last inequality follows from (6.19) with C9 = 2Cg C14 • Thus the
lemma is proved. I

7. PROOFS OF THE LEMMAS FROM SECTION 5

The proofs of Lemmas 5.1 and 5.2 are the same as those of the corre­
sponding lemmas from Section4.

Proof of Lemma 5.3. If w(zo) = 0 for a Zo EC\IR (we may assume that
Qm,(zo) = 0), then the function

we(z) = (02 \Qmj(Z)ISj)

1

_ ( sin
2
«z-n)/2) )I S

I

X QmJz) 1-8 sin(z-zo)/2) sin«z-zo)/2) E IGRTPlr

with a sufficiently small 8> 0 contradicts the maximality of W. If w(zo) = 0
for a zoE[-n,n)\[-e5,e5] (we may assume that Qml(ZO)), then the
function

with a sufficiently small 8> 0 contradicts the maximality of W. Thus the
lemma is proved. I

Proof of Lemma 5.4. If ](zo) = 0 for a Zo EC\IR, then there is an index
1~ i ~ k such that Pn; (z0) = O. But then the function

].(z) = (01 \Pnj(z)lr
j
)

j#i

Xlp( )(1- sin
2
«z-n)/2) )\r; IGRTPI

n, z e sin«z-zo)/2)sin«z-zo)/2) E N



GENERALIZED NON-NEGATIVE POLYNOMIALS 301

with a sufficiently small f; > 0 contradicts the maximality of J Thus the
lemma is proved. I

Lemma 5.5 was proved in [2, Theorem 2].

Proof of Lemma 5.6. Let Tn(x) = cos(n arccos x) (-1 ~ x ~ 1) be the
Chebyshev polynomial of degree n. Then

(
Sin(x/2))

Qn.w(x) = T2n sin(wj2) (O<w~n)

is a trigonometric polynomial of degree n. We define

with n = [N] and

It is easy to verify that the well-known explicit formula for Tn outside
( -1, 1) implies

(7.2)

where Cs is a constant depending only on c4 . We examine the product

(7.3 )

From (7.1), (7.2), and (7.3) we conclude

IG(y)/ ~ max g(x)<c;JQn(n) g(Jr)~c;J max IG(x)1
-1t~X~1t -1t:6;x::S;;n

(7.4 )

Applying Lemma 5.5 to IGI E IGCTPI2N with s = (log cs)(2N)-I, we obtain

m({ y E [ -Jr, Jr): IG(y)1 ~ exp( -log cs) max IG(x)I})
-1r~X~1t

=m({YE[-n,n):IG(y)l~exp(-2Ns) max IG(x)I})
-1t~X~1t

(7.5)

This, together with (7.4), yields

m({YE[-n,Jr)\(-w,w]:IG(Y)I~c;J max IG(x)I})~C6N-\
-1t:s.;x:E;n

hence by (7.1), (7.2), and (7.3) we deduce

m({YE [n-c4N- J, n+c4N-J]: g(Y)~C;l max g(x)})~c6N-l,
-1t::S;;x:5:;n

thus the lemma is proved. I
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The proof of Lemma 5.7 can be found in [5, Lemma 2].

Proof of Lemma 5.8. Let rj = qj/q (1 ~ j ~ k) with some positive
integers. Applying Lemma 5.7 to the trigonometric polynomial

k ( z-z z-z.)qj
IcI

2q }ll sin 2 sin 2 E T2qN

and taking the (2q)th root of its modulus we get the desired result
immediately. I

Proof of Lemma 5.9. From (5.7) and Remark 3.4 we can deduce that
1f'1 E IGCTPI N has only real zeros, and at least one of any two adjacent
zeros of 1f'1 has multiplicity at least 1. Therefore, applying Lemma 5.8 to
g= If'wl E IGCTPIN+r with r= HN +n-\ we deduce that 1f'1 does not
have two different zeros in [n - HN +n -I, n + HN + T) -I]. Since w does
not have any zero in [n - ~(N+n -I, n + ~(N+ n -I] by assumption, the
set

{YE [n - 3- I (N +n- I
, n + 3- I (N +n- I

]: g(y) ~ CS
I max g(x)}
~1t~X~1t

(7.6)

is the union of at most two intervals. Since 1f'1 does not have two different
zeros in [n - HN +n -I, n + ~(N+ r) -I], Rolle's theorem implies that f
has at most two different zeros in [n - ~(N+n -I, n + HN +n -I].
Hence, applying Lemma 5.6 to g = If'wl E IGCTPI N +r. we can find and
interval

such that

(7.8 )

and

g(Y)~CSI max g(x)
1t~X~1t

(YE I) (7.9)

f is positive (hence differentiable) on I, (7.10)

where cs> 1 and C6 > 0 are chosen for C4 =~. by Lemma 5.6. By (7.7) and
(5.8)

w is positive (hence differentiable) on I. (7.11)
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Because of (7.10) and (7.11) we can use the partial integration formula for
g = If'wl on f, which yields

C fb6:
5

(N + T)-1 _~a<xo If'(x) w(x)l;( a If'(t) w(t)1 dt

= II: f'(t) W(t) dtl;( If(b) w(b)- f(a) w(a)1 + I: If(t) w'(t)1 dt.

(7.12 )

Here we used the fact that 1f'(t)1 does not vanish on f because of (7.9). To
handle the term f~ If(t) w'(t)1 dt we use Lemma 5.8. Let

t E f c [10 - 3 -1(N + T) -1, 10 + 3-'(N+ T) -1]. (7.13)

By assumption (5.8) we easily obtain

Iw'(t)1 11 k2 t-u.,
~= 2j~1 Sjcot T ;(3r(N+T)

Hence, recalling (7.7), we obtain

(t E f). (7.14)

r If(t) w/(t)1 dt;( 3T(N + T)rf(t) w(t) dt
a a

;( 3r(N + T)(b - a) max f(x) w(x)
a~x~b

;(2F max f(x) w(x).
Q~x~b

This, together with (7.12), gives

(7.15)

max 1f'(x)w(x)/;(c
'
5(F+l)(N+T) max f(x)w(x). (7.16)

-rr~x~rr -rr~x~rr

Now observe that the Remez-type inequality of Lemma 5.5 yields

max f(x) W(X);(CI6 max f(x) w(x) (7.17)
-rr~x~rr -b~x~b

with lJ = 10 - ~(N+ T) -I, where C16 is an absolute constant, and this,
together with (7.16), gives the lemma. I

Proof of Lemma 5.10. First we assume (5.9) holds. Then Lemmas 5.1,
5.3, 5.9 and Remark 3.3 imply (5.12). Now we drop assumption (5.9). We
choose an IX E [ - 10, 10) such that

1f'(IX) w(IX)1 = max If'(x) w(x)l.
-1t::::;X~1f

(7.18)
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Applying the already proved part of the lemma to J(Z) = f(z + rx - n) E

IGCTPIN and w(z)=w(z+rx-n)E IGCTPlr, we obtain

If'(n) w(n)1 ~ If'(rx) w(rx)1 ~ Cll(r + I)(N + r) max f(x) w(x)
-rr~X~1t

~ cdr + I)(N + r) max f(x) w(x),
-b";x,,;b

(7.19)

where the last inequality follows from (7.17) with C12=CllC I6' Thus the
lemma is proved. I

8. PROOFS OF THEOREMS 1, 2, AND 3

Proof of Theorem 1. It is sufficient to prove that

1f'(I)w(I)I~CI7(N+F)2 max f(x)w(x), (8.1)
-l~x~()

where b is defined by Lemmas 4.9 and 4.10, and C 17 is an absolute constant.
To estimate 1f'(y)w(y)1 (-I~y~l) we can use the above inequality
transformed linearly to the interval [- 1, yJ if y ~ 0, or to the interval
[y, 1] if y < 0, and we obtain the desired inequality with C I = 2c 17' To
show (8.1) we may assume that

and

kl

f(z)= TI Iz-z)'i
j~l

k2

w(z) = TI Iz - u;\"J
i~ I

(Zj E C, rj ~ 1 are rational, 1 ~ j ~ k d (8.2)

since, if the inequality of Theorem 1 holds for these functions, then we get
the theorem in the general case by approximation. By Lemmas 4.2 and 4,4
we may also assume that each Zj (1 ~j~kd in (8.2) is real; therefore from
Lemma 4.10 we obtain (8.1). Thus the theorem is proved. I

Proof of Theorem 2. Because of the periodicity it is sufficient to prove
that

1f'(n)w(n)l~cI8(r+l)(N+r) max f(x)w(x), (8,4)
-(j~x~b

.
where b is defined by Lemmas 5.9 and 5.10 and C I8 is an absolute constant.
By using a density argument, it is sufficient to prove (8,4) when

k}' Z_ z<I'j
f(z)=}ll sinT



and

GENERALIZED NON-NEGATIVE POLYNOMIALS 305

(UjE iC, Sj>O are rational, 1~j~k2)' (8.6)W(Z)=jDl ISin Z~Ujr

By Lemmas 5.2 and 5.4 we may also assume that each zi (1 ~ j ~ k d in
(8.5) is real, hence Lemma 5.10 implies the theorem. I

Proof of Theorem 3. The inequality of Theorem 3 follows immediately
from Theorem 2 and Remark 3.3, by the substitution y == cos x. I
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